

www.ssuchy.eu
ssuchy_eu
ssuchy

BIO-BASED COMPOSITES: ADDING VALUE AND FUNCTIONS THROUGH ENHANCED FUNCTIONALITIES

Vincent Placet (UFC), Aart van Vuure (KU Leuven), Gea Spijkerman (Nouryon), Morvan Ouisse (UFC)

Final Event – *Videoconference* – 9th *February* 2022

PROGRAM

Bio-based composites used and developed within the SSUCHY project, an overview (5 min)

Improving the moisture durability of flax and hemp fibre composites (10-15 min)

Nouryact, a cobalt free accelerator system for unsaturated polyester curing, suitable for non-dried plant fibres (5 min)

Damping properties of bio-based composites (5-10 min)

5 min for questions/discussion

Vincent PLACET, University of Franche-Comté

Aart VAN VUURE, KU Leuven

Gea SPIJKERMAN, Teamleader Crosslinking, Thermoset and Polymer Additives, Nouryon

Morvan Ouisse, ENSMM

www.ssuchy.eu
ssuchy_eu
ssuchy

IMPROVING THE MOISTURE DURABILITY OF FLAX AND HEMP FIBRE COMPOSITES

Aart van Vuure (KU Leuven)

Final Event – *Videoconference* – 9th *February* 2022

STUDIES ON MOISTURE DURABILITY WITHIN SSUCHY

- 1) Hygrothermal Ageing, moisture cycling (KU Leuven)
- 2) Hygrothermal Creep (University of Franche Comté)
- 3) Hygrothermal Fatigue (University of Franche Comté)

INFLUENCE OF MOISTURE ON BIO-FIBRE COMPOSITES

STRATEGIES TO DECREASE EFFECT OF MOISTURE CYCLING

- 1) Choose less moisture sensitive natural fibres, e.g. bamboo fibre
- 2) Lower the Equilibrium Moisture Content (EMC) of the fibres; chemical treatment
- 3) Reduce the swelling of the fibres; constraint from the matrix?
- 4) Turn water inside the fibres into an advantage, process with water inside the fibres; pre-swollen fibres
- 5) Coatings (of fibres or composite); slow down water diffusion and mitigate peak loads
- 6) Ensure a good fibre-matrix adhesion, also at high humidity

MOISTURE DURABILITY OF NATURAL FIBRE COMPOSITES BY USING NON-DRY FIBRES PhD Morissa Lu

Less moisture sorbed? Less microcracks? Less voids? Will there be less damage at the interface?

NOT DRYING THE NATURAL FIBRES LEADS TO BETTER STRENGTH RETENTION AFTER MOISTURE AGEING (LESS DAMAGE)

SECOND, EXTENSIVE STUDY CONFIRMED RESULTS

Composite samples:

Polyester + dried flax fibre fibre (50% RH) fibre (80%RH)

Epoxy + dried flax fibre fibre (50% RH) fibre (80%RH)

Reference materials:

E-glass/epoxy European beechwood Polyester resin Epoxy resin Ageing tests

SUMMARY OF SECOND STUDY

Suchu

DEVELOPING ADVANCED

Comparison Protocols:

Immersion (IMM), Cycling (CYC), Shaded (SHA), Natural ageing exposed to sunlight (NAT)

Other conclusions:

- Immersion test seems more predictive of outdoor ageing for UNCOATED samples (leaching?)
- Cyclic samples recover (20 cycles)

PDT

PT80

DAMAGE AFTER DIFFERENT Suchy **AGEING PROTOCOLS**

SEM and

ImageJ

DEVELOPING ADVANCED BIO-BASE

DOES LONG MOISTURE CYCLING LEAD TO STRONGER NATURAL FIBRES?

Moisture content vs. # of cycles

Fibres stiffen / strengthen after cycling !!

ANOTHER SSUCHY STRATEGY TO LOWER MOISTURE SENSITIVITY: FIBRE COATINGS

HYGROTHERMAL CREEP

- Creep (& recovery) testing in various hygrothermal conditions, of core materials, skin materials and sandwich structures
- Creep models (semi-emperical), take into account fibre stiffening under load

Figure 2. Model/experiment comparison of the evolution of the deflection of sandwich material made of balsa core and Flaxtape reinforced composite skin

Other conclusion: *Variability* of elastic and time-delayed properties of PFCs is significantly lower than at the fibre scale and in the same order of magnitude as for glass fibre composites.

(HYGROTHERMAL) FATIGUE

Probing high-cycle fatigue at higher frequency (30 Hz) * Is there a fatigue limit?

Figure 2: S-N curves recorded for the flax/epoxy composite manufactured in autoclave and used for the dashboard demonstrator (black symbols). Results are compared to the ones obtained for UD flax/epoxy composites manufactured using thermocompression and described in the previous section

(HYGRO)THERMAL FATIGUE

Figure 4: S-N curves recorded for the woven hemp fabric/GreenPoxy composites tested in ambient conditions (black symbols), at -80°C (blue symbols) and at 70°C (red symbols).

Stiffening at lower temperature

CONCLUSIONS

- A wealth of new data on the durability of plant fibre composites
- Not drying the natural fibres has durability benefits and saves time and energy (if the resin and processing allow)
- Fibre coating shows promising results in improving moisture resistance
- Surprisingly, plant fibres recover and even increase in strength after prolonged cyclic moisture loading

This project has received funding from the Bio-Based Industries Joint Undertaking under the European Union's Horizon 2020 research and innovation program under grant agreement No 744349.