

www.ssuchy.eu
ssuchy_eu
ssuchy

BIOBASED COMPOSITES USED AND DEVELOPED WITHIN THE SSUCHY PROJECT, AN OVERVIEW

Vincent PLACET (Université Franche-Comté)

Contributions from KUL (Gilles Koolen, Aart Van Vuure), NPSP (Jens Verbruggen, Willem Böttger, Mark Lepelaar), UoB (Tulio Panzera, Fabrizio Scarpa), UFC (Xavier Gabrion, Thomas Jeannin, Benjamin Sala, Anouk Chevallier, Vincent Placet)

3 CATEGORIES OF COMPOSITE CONSTITUENTS

1. FULLY BIO-BASED REINFORCEMENTS & POLYMERS DEVELOPED WITHIN SSUCHY

Hemp woven fabrics balanced & unbalanced (QUD)

Hemp commingled fabrics

Bio-based polymers (epoxy: Biolgenox, bisguaiacol, aliphatic polyesters)

PURPOSES, PROOF OF CONCEPT, DEMONSTRATION

3. MARKETED FLAX-BASED REINFORCEMENTS FOR BENCHMARK

2. MARKETED BIOBASED POLYMERS (BIO-BASED EPOXY, PFA, PA11)

GreenPoxy® FUROLITE

Furan (PFA), TFC

RILSAN **ARKEMA**

PA11

EcoTechnilin

Flaxtape, Flaxpreg T-UD FR

FULLY BIO-BASED MATERIALS DEVELOPED FROM SSUCHY CONSTITUENTS

- European hemp processed using the flax machinery

- Woven hemp fabrics made from low-twisted rovings (balanced fabrics and quasi-UD)

Bio-based epoxy
 system elaborated from
 lignin-derived building
 blocks and bio-based
 hardeners

suchy

COMPOSITES

FULLY BIO-BASED MATERIALS DEVELOPED FROM SSUCHY CONSTITUENTS

HEMP/EPOXY

HEMP/Bisguaïacol-based epoxy

$\text{ER}\alpha$ agonistic activity of chemicals

- Fully bio-based
- □ Tg > 100°C
- Mechanical properties similar to DGEBA-based
 - epoxy composites (E ~
 - 15 GPa, σ_R~ 150 MPa)
- Low human toxicity
- Low environmantal impact
- **D** Potential for scale up

HEMP/GREENPOXY

Hemp/Greenpoxy composites

- Corbin et al. Journal of Composite Materials, 2021;55(4):551-564.
- Corbin et al. Composites Part B: Engineering, Volume 181, 2020
- □ Sala et al. Compos Part A, 2021, 141, 106204

Hemp (QUD) vs. Flax (Flaxtape, Amplitex)

Coloured composites

□ Fusco Girard et al. Colored Biocomposite Material. Patent EP379028A1

Braided hemp composites

HEMP/FURAN COMPOSITES

Advantages of furan

- Obtained from sugar cane bagasse
- Acid digestion followed by hydrogenation
- Available in bulk (relatively cheap)
- Thermoset resin obtained by acidcatalysed **self polymerization**
- Properties: excellent rigidity and fire retardancy

Furfuryl alcohol

Problematics

- Moisture release during curing
- Porosities
- Acid degradation of fibres
- Brittleness of resin

Generation State and State

Prepregs prepared with the woven hemp fabrics developed within SSUCHY (Basaltex)

Tensile properties HEMP6 - furan (warp direction)

- Optimisation of the manufacturing process (B-staging, moisture release times...) to reduce porosity level (< 5%)</p>
- Composite stiffness similar to theoritical predictions but strain and stress at failure are lower than expected
 Suitable for stiffness-based design applications

FLAX-BASED COMPOSITES

Flaxpreg T-UD FR (Ecotechnilin) produced by autoclave

Flax/epoxy prepreg satisfying the self-extinguishing constraints of Aeronautics

Load direction	Specific properties (MPa/g.cm ⁻³)	Glass fibre composite	Flax fibre composite	Percent variation (%)
Longitudinal	Tensile strength	521.6	238.5	↓118%
	Tensile modulus	21.2	28.3	133%
	Flexural strength	621.6	263.6	↓136%
	Flexural modulus	20.9	19.5	↓7%
Transverse	Tensile strength	10.8	15.1	139%
	Tensile modulus	5.2	3.4	↓118%
	Flexural strength	40.9	11.5	↓255%
	Flexural modulus	5.9	2.6	↓129%
45°	Shear strength	13.0	29.9	139%
	Shear modulus	40.9	3.4	↓1100%

Panzera et al. Compos Part B: 197,2020,108049,
 dos Santos et al. Compos Part B, 202: 108380

Specific properties of glass and flax fibre composites.

- Higher specific tensile modulus and similar specific flexural modulus of UD flax composites relative to E-glass composites makes
 - -> An attractive material for secondary structural applications

_
/

SANDWICH COMPOSITES

Skins: Woven hemp fabrics/GreenPoxy

PhD Thesis Benjamin Sala, Université Franche-Comté, 2021
 Sala et al. Compos Part B, 2022, 231, 109572

This project has received funding from the Bio-Based Industries Joint Undertaking under the European Union's Horizon 2020 research and innovation program under grant agreement No 744349.