

FROM BIOMASS TO BUILDING BLOCKS: -GREEN CHEMISTRY GENERATION OF LIGNIN DERIVED TAILORED BUILDING BLOCKS FOR RENEWABLE POLYMERS

Joseph Samec
Elena Subbotina
Rabia Ayub
Ivan Kumaniaev
Thanya Rukijakkan
Kuntawit Witthayolankowit

CURRENT BIOREFINERIES

1/3 of the biomass ends up in high value products such as timber and paper 2/3 of the biomass ends up as heating source or is left in the forests

OUR AMBITION

Use a under utilized feedstock and perform green chemistry to produce a renewable material for applications in automotive, aviation and sound

OUR APPROACH

Separate the bark from the woody part and develop procedures for both

CHALLENGES

CHALLENGES

To make a route for renewable material sustainable high yields of the desired product needs to be combined with rest of the feedstock = zero waste

OUR SOLUTION

- + catalytic fractionation
- ++ synthetic chemistry
- thermset properties
- LCA

- catalytic fractionation
- + synthetic chemistry
- ++ thermset properties
- LCA

- ++ catalytic fractionation
- ++ synthetic chemistry
- + thermset properties
- + LCA

Systematic evaluation of different feedstocks in respect to -efficiency to fractionate; -green chemistry; mechanical properties; LCA

OUR SOLUTION

Holistic valorization of the feedstock to a good monomer as well as no waste

This project has received funding from the Bio-Based Industries Joint Undertaking under the European Union's Horizon 2020 research and innovation program under grant agreement No 744349.